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Phase behavior and thermodynamic anomalies of core-softened fluids
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We report extensive simulation studies of phase behavior in single component systems of particles interact-
ing via a core-softened interparticle potential. Two recently proposed examples of such potentials are consid-
ered; one in which the hard core exhibits a shoulder@Sadr-Lahijanyet al., Phys. Rev. Lett.81, 4895~1998!#,
and the other in which the softening takes the form of a linear ramp@Jagla, Phys. Rev. E63, 061501~2001!#.
Using a combination of state-of-the-art Monte Carlo methods, we obtain the gas, liquid, and solid phase
behavior of the shoulder model in two dimensions. We then focus on the thermodynamic anomalies of the
liquid phase, namely, maxima in the density and compressibility as a function of temperature. Analysis of the
finite-size behavior of these maxima suggests that, rather than stemming from a metastable liquid-liquid critical
point, as previously supposed, they are actually induced by the quasicontinuous nature of the two dimensional
freezing transition. For the ramp model in three dimensions, we confirm the existence of a stable liquid-liquid
~‘‘second’’! critical point occurring at higher pressure and lower temperature than the liquid-gas critical point.
Both these critical points and portions of their associated coexistence curves are located to high precision. In
contrast to the shoulder model, the observed thermodynamic anomalies of this model are found to be authentic,
i.e., they are not engendered by an incipient new phase. We trace the locus of density and compressibility
maxima, the former of which appears to terminate close to the second critical point.

DOI: 10.1103/PhysRevE.66.031509 PACS number~s!: 64.70.Dv, 61.20.Ja, 64.60.Fr
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I. INTRODUCTION

Much attention has been paid recently to the phase be
ior of single component systems of particles interacting
the so-called core-softened~CS! potentials. These potential
possess a repulsive core that exhibits a region of ‘‘softeni
in the form of a shoulder or a ramp. Physical motivation
such models derives from the desire to encapsulate with
simple two-body isotropic potential, the complicated featu
of systems interacting via anisotropic potentials. Notable
amples of the latter include liquid metals@1#, tetrahedrally
bonded molecular liquids such as phosporous@2# and water
@3#. Performing such simplifications yield models that a
analytically and computationally tractable but which, o
hopes, nevertheless retain the qualitative physical feature
the real systems they seek to describe.

Notwithstanding their relevance to real anisotropic s
tems, model CS systems have long been studied for t
intrinsic physical interest@4–8#. Indeed, it is well established
that they exhibit significantly richer phase behavior than c
ventional single component fluids. For instance, in cert
CS models an isostructural solid-solid phase transition is
served, accompanied by a solid-solid critical point@5,9#. But
perhaps the most intriguing feature of core softening is
prediction that it may engender a demixing transition b
tween two liquids of different densities, distinct and ad
tional to the usual liquid-gas phase transition.

The first suggestions along these lines came from the
turbative calculations of Stell and co-workers@4,5# more
than 30 years ago. Much more recently, Stanley and
workers@10–12# have presented simulation evidence app
ently supporting the existence of a liquid-liquid phase tra
1063-651X/2002/66~3!/031509~14!/$20.00 66 0315
v-
a

’’
r
a

s
-

of

-
ir

-
n
b-

e
-
-

r-

o-
r-
-

sition in a two-dimensional~2D! system of CS particles
These studies show that on reducing the temperature at
stant pressure, a maximum occurs in the density, while
compressibility passes through a minimum before sub
quently rising strongly as the system approaches the free
transition. These thermodynamic anomalies, specifically
rise in the compressibility with decreasing temperature, w
attributed to the existence of a liquid-liquid critical poin
~termed the ‘‘second critical point’’!. No direct evidence for
this critical point was found in the stable liquid region. How
ever, a power law extrapolation of the measured increas
the compressibility as a function of temperature, sugges
that a critical point may lie hidden within the stable crysta
line region. This proposal that the thermodynamic anoma
are linked to a metastable second critical point, was re
forced by mean-field calculations, based on a simple
model. These were reported to indicate a critical point wh
location was consistent with that found from extrapolation
the measured rise in the compressibility.

The discovery of thermodynamic anomalies in CS flu
mirrors similar findings in liquid water@13,14# close to the
freezing transition. The apparent connection with a sec
critical point lends weight to the hypothesis that a metasta
liquid-liquid critical point may be responsible for the ce
ebrated anomalous behavior of water@13,15–17#. Although
no compelling evidence for a liquid-liquid phase transition
supercooled water has yet been reported, there do ex
variety of indirect experimental and theoretical data favor
the proposition@18–20#. Additionally, there is evidence fo
liquid-liquid phase transitions in a number of other sing
component systems such as liquid molecular phosporous@2#,
graphite @21#, silica @22,23#, as well as certain molecula
©2002 The American Physical Society09-1
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NIGEL B. WILDING AND JAMES E. MAGEE PHYSICAL REVIEW E66, 031509 ~2002!
models that take directional bonding into account@24,25#.
To date, most studies of second critical points in CS s

tems appear to indicate a liquid-liquid transition that ismeta-
stablewith respect to crystallization@12,26,27#. By contrast,
Jagla@28# has recently presented Monte Carlo~MC! simula-
tion results for a CS model which, he submits, provides e
dence of astableliquid-liquid critical point. This model dif-
fers from many other CS models~see, e.g., Ref.@10#! in that
rather than having a pronounced shoulder in the poten
the softening takes the form of an inclined linear ramp. St
ies of the model found van der Waals type loops along i
bars and evidence of a liquid-phase density anomaly.

Inspired by the above findings, we have attempted
gather further simulation evidence for the existence
liquid-liquid critical points in core-softened models. Our a
proach employs a variety of Monte Carlo simulation me
ods tailored to the efficient study of liquid and solid phas
and their critical points. We investigate two CS mode
qualitatively distinct in character. The first is the ‘‘shoulde
potential initially proposed by Sadr-Lahijanyet al. @10#,
which we study in 2D. The other is Jagla’s ‘‘ramp’’ potenti
@28#, which we study in 3D.

The main features of our results are as follows. In the
shoulder model we reproduce the phase diagram foun
Ref. @10# and present results concerning the solid-solid ph
transitions. We then proceed to a detailed study of the liq
phase, focusing attention on the density and compressib
anomalies and their finite-size behavior. Our results sh
that rather than being linked to a metastable liquid-liqu
critical point, these anomalies are instead associated with
freezing of the liquid to a 2D solid of lower density via
quasicontinuous phase transition. We also report cell mo
mean-field calculations for the shoulder model. These, h
ever, do not support the existence of a liquid-liquid critic
point reported on the basis of similar calculations in R
@10#.

Our studies of the 3D ramp model deploy isotherm
isobaric MC simulation methods to study the reported fin
ing of a stable second critical point@28#. We indeed confirm
the existence of this point, and determine its parameter
higher precision than obtained previously. Using multic
nonical MC sampling and histogram reweighting techniqu
we map the liquid-liquid and liquid-gas coexistence lines
high precision. Investigation of the low-density liquid pha
confirms the existence of maxima in the density and co
pressibility. In contrast to the shoulder model, these ano
lies are found to be authentic, i.e., they are not the resu
an incipient new phase. We trace the locus of density
compressibility maxima, the former of which appears to t
minate on the liquid-liquid coexistence curve very close
the critical point.

II. SHOULDER MODEL

The first CS model we consider takes the form of a 1
Lennard Jones~LJ! potential whose attractive tail is modifie
by the addition of a Gaussian well centered on rad
r 5r 0,
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Here e sets the LJ well depth,s the length scale,l the
Gaussian well depth, andw the width of the Gaussian. In
common with Ref.@10#, we have studied this model intwo-
dimensions, employing potential parameters valuese51,l
51.7,s51,w55,r 051.5. Additionally, a cutoff was im-
posed atr 52.5s for which no correction was applied. Th
form of the resulting potential is shown in Fig. 1. From th
figure, one sees that in the core and tail regions, the pote
closely approximates the LJ form. Close tor 0, however, the
potential is dominated by the inverted Gaussian, the effec
which is to generate a shoulder in the core.

We have studied the gas, liquid, and solid phases of
model using MC simulation techniques. In the followin
subsections we describe our results for each region of
phase diagram in turn.

A. The liquid-gas and sublimation lines

In terms of computational tractability, the liquid-gas tra
sition line is the most straightforwardly obtained feature
the phase diagram because it lies in a region of relativ
elevated temperature, where acceptance rates for M
Carlo moves are generally high. Experience with a variety
fluid models has shown@29–31# that a combination of grand
canonical ensemble~GCE! simulations@32#, multicanonical
preweighting@33#, and histogram reweighting@34# provides
an efficient means of tracing a liquid-gas coexistence cu
Details of the implementation can be found in Refs.@29,31#,
but the basic strategy is to focus on the fluctuations of
number densityr5N/L2 in a square box of linear dimensio
L; more specifically, we consider the number density pro
ability distribution functionp(r). Precisely at coexistence
this distribution is doubly peaked with equal integrat
weight~area! under each peak@35#. For each chosen value o

FIG. 1. The core-softened potentials studied in this work. T
shoulder potential of Ref.@10# is represented by the solid curve; th
dashed curve corresponds to the ramp potential of Ref.@28#. Also
shown for comparison~dotted curve! is the standard Lennard-Jone
12-6 potential.
9-2
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PHASE BEHAVIOR AND THERMODYNAMIC ANOMALIES . . . PHYSICAL REVIEW E 66, 031509 ~2002!
the reduced temperatureT!5kBT/e, coexistence is located
by tuningm![m/kBT until the measuredp(r) satisfies this
equal peak weight criterion.

We have measured the formp(r) along the liquid-gas
coexistence curve, starting near the critical point. The sim
lations were performed for systems of linear dimensionL
510s and L512.5s. A selection of coexistence distribu
tions for the larger system size are presented in Fig. 2~a!. In
the vicinity of the liquid-gas critical point the two peaks a
quite close together and the trough separating them is s
low. In principle, the critical temperature can be estima
precisely by employing finite-size scaling~FSS! methods ac-
cording to the approach described in Refs.@36,29#. However,
as the critical behavior is not the principal focus of t
present study we have not performed a full FSS analy
Instead we obtained an approximate estimate of the crit
parameters by tuningT! and m! until p(r) matches the
known universal fixed point form of the order parameter d
tribution function appropriate to 2D Ising universality cla

FIG. 2. ~a! The measured density distributionp(r) at a selection
of state points along the liquid-gas and LDTS-gas coexistence l
of the shoulder model, obtained in the manner described in the
The inset shows a magnified version of the high-density reg
Dashed lines serve as guides to the eye.~b! The double peaked form
of p(r) at T!50.68 corresponding to LDTS-liquid coexistenc
obtained by histogram extrapolation of the triple point distributi
at T!50.72 shown in~a!.
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@36#. This yielded the estimateTc
!50.955(5), mc

!5
23.373(2).

As the temperature is decreased below its critical val
the trough separating the peaks deepens and the peak d
ties separate in the usual way@36#. On reachingT!50.72,
however, an interesting feature emerges—the liquid peak
furcates, with a new narrow peak appearing on its lo
density side@Fig. 2~a!#. On further reducing temperature, th
new peak grows at the expense of the original peak. Be
T!50.6 only the new peak remains.

The appearance of three peaks inp(r) at T!50.72 is
suggestive of a triple point. In order to identify the phas
involved, we have examined the structure of configuratio
having densities close to those of the peaks. The low
density phase, havingr,0.02 is immediately identifiable a
a gas phase. In order to isolate the two high-density pha
we studied temperatures slightly above and belowT!

50.72. Snapshot configurations and measurements of th
dial distribution functiong(r ) for the L510s system@Fig.
3~a!# show that aboveT!50.72 the system is liquidlike, hav
ing a nearest neighbor distance corresponding to the ra
of the shoulder in the potential. BelowT!50.72, the high-
density phase@which has a densitylessthan that of the liq-

es
xt.
.

FIG. 3. ~a! Density distributionsp(r) for the liquid at T!

50.75, m!523.7 ~left! and the LDTS atT!50.65, m!523.8
~right! for a system of sizeL510s. ~b! Snapshot configurations o
the liquid and LDTS.~c! Measured radial distribution functiong(r )
for the liquid ~left! and LDTS~right!.
9-3



f t

ea
a
th
lo
th
th

ity
th
r-

tio

in
a

ex

al
be
es
n

by
S-
ht-

in

id
a
ad-
ent
ce

id
esti-
two

-
iso-

in-
er-

ge

ng
e

of
ints.
re-
s:

runs

f the
c-
h a

em
er

e

ntil

id-

e

por-

sity

in

-
b-

NIGEL B. WILDING AND JAMES E. MAGEE PHYSICAL REVIEW E66, 031509 ~2002!
uid, see Fig. 3~a!# is a 2D solid of triangular symmetry, with
a nearest neighbor distance consistent with the radius o
potential minimumr 0 ~cf. Fig. 1!. This is the low-density
triangular solid~LDTS! identified in Ref.@10#.

Generally speaking, GCE Monte Carlo is unable to d
well with solid phases due to the very low acceptance r
for particle exchange moves at typical solid densities. In
present case, however, it turned out to be possible to fol
the sublimation line to temperatures considerably below
of the triple point because of the unusually low density of
LDTS. Our results@Fig. 4~a!# show that the density of the
LDTS remains constant within the resolution of our dens
scale. This finding would appear to reflect the fact that
functional form of the potential minimum in which the pa
ticles reside, is approximatelysymmetric~it is Gaussian!, im-
plying that there is no energetic advantage of contrac
over expansion.

Figure 4~b! shows the liquid-gas and sublimation lines
the m!-T! space. Overall, little system size dependence w
observed in the locus of the liquid-gas and LDTS-gas co
istence lines. A notable exception was the neighborhood
the triple point at which the LDTS, liquid, and the gas,
coexist. This point marks the start of a coexistence line
tween the LDTS and the liquid. Because the solid is l
dense than the liquid with which it coexists, the gradie

FIG. 4. ~a! The liquid-gas and LDTS-gas coexistence lines
the r-T! plane, obtained as described in the text.~b! The corre-
sponding phase diagram in them!-T! plane. Also shown is a seg
ment of the finite-size shifted LDTS-liquid coexistence line o
tained forL512s via reweighting of the triple point histograms@cf.
Fig. 2~b!#.
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dm!/dT! of this coexistence line is negative, as mandated
the Clausius-Clapeyron equation. A portion of the LDT
liquid coexistence line was estimated by histogram reweig
ing the triple point data for theL512s system size. The
results@included in Fig. 4~b!# were obtained by tuningT!

andm! such as to maintain both a liquid and a solid peak
p(r) @cf. Fig. 2~b! for an example distribution#. It was sub-
sequently found, however, that the locus of the LDTS-liqu
line exhibits large finite-size effects; specifically it shifts to
lower temperature with increasing system size. We shall
dress this matter in detail in Sec. II B, where we also pres
a more accurate estimate for the LDTS-liquid coexisten
boundary.

B. Liquid-solid transitions and thermodynamic anomalies

In this section we consider the properties of the liqu
phase and its freezing behavior. These have been inv
gated by means of GCE simulations conducted along
lines of constant chemical potential, one havingm!523.0
and the other havingm!523.5. Simulation runs were per
formed at a number of selected temperatures along both
m! lines, extending from the freezing point up toT!50.9.
The principal observable recorded in each run was the
stantaneous density, the fluctuation spectrum of which p
mits construction of the density distributionp(r) ~accumu-
lated as a histogram! and thence evaluation of the avera
density^r& and the compressibilityk.

The data from the complete set of runs performed alo
each iso-m! line, were combined self-consistently within th
multihistogram framework@34#. Histogram reweighting was
then employed to accurately interpolate into the regions
temperature intermediate between the simulation state po
In order to allow assessment of finite-size effects in the
sults, this procedure was repeated for five system sizeL
517.5s,22.5s,30s,35s, andL540s. For the largest sys-
tem sizes, reliable histogram extrapolation necessitated
at ten different temperatures along an iso-m! line. For the
smallest system sizes, five simulations proved sufficient.

Figure 5 shows the measured finite-size dependence o
compressibility form!523.0. One observes that on redu
ing the temperature, the compressibility passes throug
shallow minimum atT!'0.75, before rising strongly to a
peak. The position of this peak is, for the smaller syst
sizes, strongly finite-size dependent, moving both to low
temperature and becoming considerably sharper asL in-
creases. For the two largest system sizes (L535s and L
540s) there is, however, relatively little difference in th
peak height or position, which lies atT!50.576(1). We
postpone detailed discussion of this finite-size behavior u
Sec. IV.

The increase in the compressibility is traceable to a w
ening ofp(r). In order to clarify the physical origin of this
effect, it is instructive to examine the time evolution of th
system density for the largest system sizeL540s at the
temperature for which the peak occurs. A representative
tion of this evolution is shown in Fig. 6~a!. Clearly there are
two regions of preferred density, and a substantial den
autocorrelation time associated with each. Figure 6~b! dis-
9-4
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PHASE BEHAVIOR AND THERMODYNAMIC ANOMALIES . . . PHYSICAL REVIEW E 66, 031509 ~2002!
plays the density distributionp(r), for the largest two sys-
tem size. These exhibit a double-peaked structure. The
crease in the compressibility reflects the widening ofp(r) as
the double peaked structure develops.

The double peaked form ofp(r) suggests that two dis
tinct phases coexist at the temperature of the compressib
peak. To investigate this matter further, we have studied
configurational structure at temperatures slightly below a
above the peak temperature. Representative snapshot

FIG. 5. The measured temperature dependence of the comp
ibility k5bV^(Dr)2& for m!523.0 for the system sizes shown i
the key. The curves were obtained from multihistogram extrap
tion of the data from a number of individual simulations, as d
scribed in the text.

FIG. 6. ~a! A portion of the time evolution of the density fo
L540s at T!50.576. ~b! Density distributions p(r) for L
535s,40s at the temperature of the compressibility maximum.
03150
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shown in Fig. 7. At a temperature,T!50.55, below the tran-
sition, Fig. 7~a! shows the presence of long-ranged trans
tional order~on the scale of our system size! in the form of a
triangular lattice. This we associate with the LDTS. AtT!

50.6, above the temperature of the compressibility ma
mum, Fig. 7~b! shows that the system is clearly noncryst
line. There is, nevertheless, evidence for substantial clus
of LDTS-like structure, one of which we have indicated
the figure.

We have also obtained the temperature dependence o
average density, the finite-size behavior of which is shown
Fig. 8~a!. One sees that as temperature is decreased, the
sity rises to a peak, before falling rapidly to a lower valu
The peak temperature initially shifts to lower values as
system size increases, but seems to converge for the la
systems to a value higher than that to which the compre
ibility maximum converges. We find that the temperature
which the density starts to fall rapidly, coincides with th
first appearance of a subsidiary peak in the density distr
tion P(r) for all systems sizes@cf. Fig. 8~b!#. This peak
occurs at the same density as the lower density~LDTS! peak
in Fig. 6~b! and is thus indicative of infrequent fluctuation
of the system into the solid phase.

Taken together, the above findings suggest that the t
modynamic anomalies are tied to the liquid-LDTS freezi

ss-

-
-

FIG. 7. Typical snapshot configurations taken from theL
535s system atm!523.0. ~a! T!50.55, the system is in the
LDTS phase~b! T!50.6, the system is in a liquidlike phase, b
displays clusters of crystalline ordering, one of which is ringed.
9-5
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NIGEL B. WILDING AND JAMES E. MAGEE PHYSICAL REVIEW E66, 031509 ~2002!
line and not a buried critical point. If so, then similar beha
ior should be expected all along the freezing line. That thi
indeed the case is confirmed by our results form!523.5.
This line intersects the LDTS melting curve close to t
gas-liquid-LDTS triple point at a temperature ofT!

50.628(2). Theassociated measurements of the compre
ibility ~Fig. 9! display finite-size effects whose magnitude
comparable to, if not greater than, those observed form!5
23.0. The main difference is that for a given system si

FIG. 8. ~a! The measured temperature dependence of the a
age density form!523.0, for a range of system sizes.~b! Number
density distribution,p(r), for the L540s system size atm!5
23.0,T!50.58, corresponding to the point where the density cu
starts to fall in~a!.

FIG. 9. As Fig. 5, but form!523.5.
03150
-
is

s-

,

the height of the maximum in the compressibility is som
30% less than atm!523.0.

Having located two coexistence state point on the LD
melting line, a number of further simulations were perform
~for the L540s system size! to trace out the whole coexist
ence line. This was identified as the locus of compressibi
maxima. The choice of state points for these runs was gui
by histogram extrapolation of the existing coexistence da
For eachm! studied, visual checks were made of configu
tions at temperatures either side of the compressibility ma
mum in order to confirm that the line of maxima coincid
with the freezing line. The results are shown in Fig. 1
together with the liquid-gas and sublimation lines determin
in Sec. II A.

Figure 10 shows that the LDTS melting line is bound
by two triple points: the gas-LDTS-liquid point at lowm!

end, and a triple point involving the liquid, LDTS, and
high-density square solid~HDSS! phase at highm!. The
HDSS phase was first reported in Ref.@10#. For values ofm!

exceeding that of the latter triple point, the liquid freezes in
the HDSS rather than the LDTS. We attempted to map
liquid-HDSS coexistence curve. Unfortunately, at the den
ties prevailing near this line, our GCE algorithm becom
very inefficient due to a low acceptance rate for parti
transfers. This prevented us from studying large system s
and from determining the finite-size behavior of the tran
tion. We have therefore only be able to determine a limi
portion of its locus for one small system of sizeL510s. The
results~Fig. 11!, confirm that the HDSS has a square latti
exhibiting quasi-long-ranged order. The associated estim
of the freezing line for this system size is included in Fig. 1

C. Cell theory calculations

Reference@10# offers direct evidence for the existence
a second critical point in the 2D shoulder model in the fo
of a mean-field cell theory calculation. This was reported
show a liquid-liquid critical point whose position was co
sistent with the extrapolation into the stable crystalline

r-

e

FIG. 10. The phase diagram of the 2D shoulder model in
m!-T! plane, obtained in the manner described in the text.
analysis of finite-size effects has been performed for the HD
melting line.
9-6
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PHASE BEHAVIOR AND THERMODYNAMIC ANOMALIES . . . PHYSICAL REVIEW E 66, 031509 ~2002!
gion of the simulation measurements of the compressibi
In this section we detail our attempts to follow up on th
finding.

Cell theory was first proposed by Lennard-Jones and
vonshire@37# and a description of the method can be fou
in Refs. @38,39#. Within the framework of the 3D model
particles are considered to be localized in singly occup
spherical ‘‘cells’’ of volumev5V/N and radiuss, centered
on the sites of a fully occupied lattice of some prescrib
symmetry. A particle in its cell is considered to interact w
its c nearest neighbors ‘‘smeared’’ around the surface o
further sphere of radiusa concentric with the cell. The vol-
ume of this ‘‘interaction sphere’’ is related to the cell volum
by a35gv, whereg is a lattice-dependent constant, chos
so that for a primitive unit cell of volumev the lattice pa-
rameter will be the radius of the interaction shell.

FIG. 11. ~a! Density distributionp(r) for the HDSS atT!

50.6, m!522.0 for a system of sizeL510s. ~b! A typical snap-
shot configuration.~c! Measured radial distribution functiong(r ).
03150
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The Gibbs free energy per particle of the model is giv
by

g~v !52kBT ln v fsc1
E0

2
1Pv. ~2.2!

Here E0 is the ‘‘ground state energy’’—the energy per pa
ticle if all occupied their lattice sites;sc is a constant ‘‘com-
munal entropy’’ term@40#, which attempts to account for th
entropy lost due to the localization of particles within cel
andv f is the ‘‘free volume,’’

v f5E
v
e2[E(r )2E0]/kBTdr , ~2.3!

with E(r ) the ‘‘cell potential,’’ i.e., the interaction energy o
a particle at a positionr within its cell. If c neighboring
particles are assumed to be smeared over the interaction
and the interparticle potential is given byu(R), the total
energy of the particleE(r ) is given by

E~r !5c

E
shell

u~R!dA

4pa2
. ~2.4!

One normally performs this integration numerically with fu
ther numerical integration to calculate the free volume
cording to Eq.~2.3! and Gibbs free energy for a given choic
of number densityr5v21.

We have obtained the 2D cell theory phase diagram of
potential of Eq.~2.1! in order to compare with the results o
Ref. @10#. Our study employed a triangular lattice of cel
with parametersc56 andg52/A3. The results are shown in
Fig. 12~a!. The phase diagram exhibits four separate pha
which we have labeled~i!–~iv!, delineated by first order co
existence lines~solid curves!. In the case of phases~i! and
~ii !, we were unable to follow the coexistence line rig

FIG. 12. Phase diagram for the 2D shoulder model calcula
via the cell theory described in the text.~a! The P!-T! projection.
~b! The T!-r projection.
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NIGEL B. WILDING AND JAMES E. MAGEE PHYSICAL REVIEW E66, 031509 ~2002!
down to zero temperature, because phase~i! has a density
lower than what can be represented by the precision of
calculations. We have therefore simply extrapolated the m
sured portion using a linear fit~dotted line!.

While no theory based on a prescribed underlying latt
can provide an unambiguous representation of fluid pha
or crystalline solids of arbitrary structure, a plausible iden
fication of the phases can nevertheless be made by exa
ing their associated cell potentialsE(r ). For phases~i!, ~ii !,
and~iii !, these have been calculated at their triple point, p
mitting a direct comparison under identical conditions ofP!

and T!. The results are shown in Figs. 13~a–c!. The cell
potential at coexistence between phases~iii ! and ~iv! are
compared in Figs. 13~d–e!. Inspection of Fig. 13~e! shows
that the cell potential for phase~iv! displays a strong mini-
mum at the cell centerr 50 ~i.e., at the lattice site!, allowing
us to identify this phase as solidlike. By contrast, for pha
~i!, the cell potential@Fig. 13~a!# has a noncentral minimum
and, as such, would be unstable as a lattice phase. Sinc
density at which the minimum occurs is low, we tentative
assign this as gaslike. Similar arguments suggest that p
~iii ! is a fluid@Fig. 13~c!# and, because it is denser than pha
~i!, and separated from it by a first order phase transit
liquidlike in character. Additionally, at high temperature~off
the scale of our figure!, we find a critical point terminating
the first order line of coexistence between phases~i! and~ii !.
Finally, the cell potential for phase~ii ! shown in Fig. 13~b!
exhibits a deep minimum at the lattice site, suggesting i
solidlike.

Given these assignments, a resemblance is evident
tween Fig. 12~a! and that found by simulation~Fig. 10!.
Most strikingly, the freezing transition between phases~iii !
and ~ii ! displays a negative gradient as found in the simu
tions. Moreover, the phase diagram seems to exhibit a se
critical point, terminating the line of coexistence betwe
phases~iii ! and~iv!. However, given the previous identifica
tion of phase~iii ! as liquidlike and phase~iv! as solidlike,
such a second critical point has no physical counterpart.
thermore, it should be stressed that its appearance isnot a

FIG. 13. The cell potential, defined in the text, corresponding
the phases shown in Fig. 12.~a!–~c! correspond to phases~i!–~iii !,
respectively, calculated at the triple point. Parts~d!,~e! correspond
to phases~iii ! and ~iv!, respectively, calculated at coexistence f
T!50.5.
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unique feature of the CS potential, as we have rece
shown @39# in cell theory studies of the 12-6 LJ potentia
Here too, two critical points we found; an artifact critic
point terminating the liquid-solid transition and another,
liquid-gas critical point. The latter had not hitherto been
ported in the literature, while the artifact critical point ha
previously been mistaken for the liquid-gas critical poin
The appearance of artifact critical points appears to be sy
tomatic of the fact that, owing to its lattice-based charac
cell theory cannot properly represent the inherently dis
dered nature of liquid phases.

We have found no evidence for a fluid-fluid phase tran
tion additional to the liquid-gas transition in the cor
softened potential. The artifact critical point we do find is f
removed in the phase diagram from the second critical p
reported in Ref.@10#. However, the formulation of cel
theory reported there, appears to differ from the traditio
implementation in that it neglects ground state terms in
potential @41#. In view of this, we have also obtained th
phase diagram for this version of the theory. The results~Fig.
14! display qualitative differences from those of the mo
conventional formulation we have described. In particu
there appears to be no liquid-vapor transition. There a
however, two critical points, although both appear to be
tifacts of the cell theory, one terminating the low-pressu
solid-liquid coexistence and the other terminating the hig
pressure solid-liquid line. Neither can be considered to
minate a liquid-liquid transition and neither is located in t
general vicinity of that reported in Ref.@10#.

D. Solid-solid transitions

We have investigated the solid phases of the 2D shou
model as a function of temperature and pressure usin
combination of analytical and simulation methods. Our m
tivation for doing so was to check for the existence of

o

FIG. 14. Cell theory phase diagram for the 2D shoulder mod
neglecting the ground state termE0 in the Gibbs free energy~see
text!. ~a! The P!-T! projection.~b! The T!-r projection. Phases~i!
and ~iii ! are solidlike, while phase~ii ! is liquidlike.
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PHASE BEHAVIOR AND THERMODYNAMIC ANOMALIES . . . PHYSICAL REVIEW E 66, 031509 ~2002!
isostructural solid-solid critical point, such as that seen
other CS models@5,9#. The large fluctuations associated wi
such a critical point~and with the associated hexatic phas
known to occur in 2D systems@42#!, might complicate the
interpretation of liquid phase thermodynamic anomalies.

Our investigation of the solid phases begins by perfor
ing analytical calculation based on the harmonic approxim
tion ~HA!. These supply results which, whilst exact in t
low-temperature limit, lose accuracy with increasing te
perature. They are thus used as a starting point for di
simulations of lattice-lattice phase coexistence using the
tice switch Monte Carlo~LSMC! method @43–45#. Whilst
powerful, we found that for this particular model LSMC b
comes inefficient as melting is approached owing to
tended sampling times caused by a significant defect con
tration. Thus we turn at high temperature to Gibbs-Duh
integration which provides a faster, though less accurate
proach to tracing coexistence curves.

Both the HA and LSMC approaches are designed
studying solid phases. However, they share a common p
lem, namely, that rather than predicting which of the set
possible crystal lattice occurs, a chosen subset of latt
must be proposed and checked against one other for rel
stability. In this work, we only consider the possibility o
square and triangular~hexagonal! lattices, these being th
ones observed in the original work@10#. It is, nevertheless
possible that other stable lattices may exist~see Ref.@8# for
an example!.

Harmonic approximation studies

Harmonic approximation calculations@46# have been per-
formed for a 16316 system of particles on both square a
triangular lattices. Coexistence lines were located by usin
Newton-Raphson root-finding algorithm@47# to solve for
conditions of equal pressure and Gibbs free energy. The
sults are presented in Figs. 15 and 16 and show three tra

FIG. 15. P!-T! projection of the 2D shoulder model phase d
gram calculated within the harmonic approximation. Circles in
cate the state points at which calculations were performed, cu
guide the eye. Solid lines indicate transitions between thermo
namically stable phases. The dashed line represents the locus w
the stable square lattice phases at which the metastable p
changes from being the LDTS to the HDTS. The dot-dashed
shows the melting curve reported in Ref.@10#.
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tion lines. At very low pressure, an open triangular latti
phase~LDTS! is stable, which transforms to a dense squ
lattice phase~HDSS! on increasing pressure, in line with th
results of Ref.@10#. At a very high pressure, this dens
square lattice undergoes a transition to a new dense tria
lar lattice phase~high-density triangular solid, HDTS!. The
third transition line occurs at intermediate pressure, and
isostructural, separating LDTS and HDTS phases, both m
stable with respect to the square lattice phase.

The existence of a stable square lattice phase is unus
In the case of the shoulder potential, however, the lattice
nearest neighbors sitting in the minimum of the Lenna
Jones part of the interaction potentials, and is stabiliz
through second-nearest neighbors sitting in the deep Ga
ian well part @cf. Fig. 11~c! and Fig. 1#. We find that if
second-nearest neighbor interactions are ‘‘turned off,’’ t
presence of the square lattice is completely suppressed.

We have calculated the coexistence lines for reduced t
peratures up toT!50.9. The ‘‘hidden’’ isostructural line fin-
ishes atT!50.205, whilst the LDTS-HDSS line ends atT!

50.575. In both these cases, the transition line ends bec
the root finding algorithm cannot identify a coexistence v
ume for the LDTS phase which is mechanically stable with
the approximation. In the case of the LDTS-HDSS transiti
this probably indicates approach to melting and the ass
ated breakdown of the approximation. In the case of the h
den isostructural transition, this could simply be a point b
yond which the LDTS phase loses mechanical stability, o
could indicate approach to a hidden isostructural criti
point ~the associated fluctuations of which would also cau
breakdown of the approximation!. If there is a hidden isos-
tructural critical point, with any associated region of hexa
phase stability@42#, we note that it would be at far too hig
a pressure to be in any way associated with the thermo
namic anomalies noted in the liquid phase.

The HDTS-HDSS coexistence line continues across
region we have checked; its only peculiarity is that it pas
through a pressure maximum at aroundT!'0.51. From the
Clausius-Clapeyron equation,dP/dT5DS/DV, we know

-
es
y-
hin
ase
e

FIG. 16. T!-r projection of the 2D shoulder model phase di
gram calculated within the harmonic approximation. Solid lines
dicate the equilibrium coexistence densities between pha
Dashed lines indicate the binodal for the metastable LDTS-HD
transition. Dotted lines correspond to the spinodals of the HD
and LDTS phases.
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NIGEL B. WILDING AND JAMES E. MAGEE PHYSICAL REVIEW E66, 031509 ~2002!
that passing through this point with increasing temperatu
the entropy difference between the HDSS and HDTS pha
changes sign. We suggest that at low temperatures~where
particles remain close to their lattice sites! the greater en-
tropy of the square lattice reflects its larger volume. W
increasing temperature, however, particles in the triang
lattice will be free to explore an ever greater region of co
figuration space, whilst those in the square lattice will
constrained by the conditions on the positions of seco
nearest neighbors necessary to maintain mechanical stab
Accordingly the square lattice will have lower entropy.

Lattice switch Monte Carlo and Gibbs-Duhem integration studie

At high temperature, or on approaching the melting tra
sition, the HA breaks down. We have therefore used our
results as the starting point for a method which uses di
two-phase simulation of coexisting solid phases—LSM
@43–45#. Our implementation of LSMC is similar to tha
described in Ref.@45#, except that we operate in the consta
NPT ensemble@32#, and as such our order parameter is t
difference in enthalpy,DH, between conjugate pairs of con
figurations. In addition to alternating between different s
of lattice vectors, our lattice switch move also alters the
pect ratio of the box between 1:1~for a square lattice! and

AA3/2:A2/A3 ~for a triangular lattice! @48#, and adds a

lattice-dependent scaling factor to move between the dif
ent characteristic volumes for each phase~determined by two
short single phase simulations at the state point!.

LSMC simulations were performed for both the LDTS
HDSS and HDSS-HDTS coexistence lines for a system
256 particles. Whilst metastable triangular phases of the
rect volumes for the hidden isostructural transition we
found at low pressure, their lifetime in a Monte Carlo ru
was insufficient for simulation of coexistence. For t
HDSS-HDTS transition, simulations were performed at t
low-temperature state points on the phase boundary to ve
its existence; coexistence was found atT!50.1,P!516.60
andT!50.2,P!516.73. These results agree well with tho
from the HA.

Results from our LSMC simulations for the LDTS-HDT
line are shown in Fig. 17. Up to a reduced temperature
T!50.2, these agree well with the HA results, but above t
temperature the simulation coexistence line lies at hig
pressures than the HA coexistence line. This is to be
pected, since the HA is unlikely to deal well with the ve
low density of the LDTS phase.

As the temperature was raised aboveT!50.2, the LSMC
method was found to become increasingly less efficient.
essential aspect of the method is to bias the phase s
sampling such that the system regularly samples config
tions in which the particles are very close to their latti
sites. As the melting temperature was approached, this
came progressively more problematic, due to an increas
the defect concentration. Indeed the presence of such de
is well known to be a feature of 2D melting@49#. Once the
reduced temperatureT!50.4 was reached, the problem b
came so severe that use of LSMC was no longer feasibl
was therefore decided to continue tracing the coexiste
03150
e,
es

ar
-
e
-

ity.

-
A
ct

-
e

s
-

r-

f
r-

e

ify

f
s
r

x-

n
ce

a-

e-
in
cts

It
ce

curve to higher temperatures using Gibbs-Duhem~GD! inte-
gration @50,32#. This involves performing separate sing
phase simulations at a coexistence state point, from wh
the slope of the coexistence curve is estimated via
Clausius-Clapeyron equation. Integration of this equation
lows the locus of the coexistence line to be tracked. The G
method assumes nothing about the coexisting phases
from that they are~meta! stable over the time scale of th
simulations, and is both efficient and easy to perform. O
GD implementation employed a simple two-step trapez
predictor-corrector integrator@47#; the results are shown a
the dashed line in Fig. 17. We see that the GD estima
coexistence line smoothly extends the LSMC line, up to
temperatureT!50.525; above this temperature, the triang
lar lattice phase was observed to melt. This coexistence
terminates at a temperature which agrees~within error! with
the melting curve estimated by Sadr-Lahijanyet al. @10#, but
at a pressure significantly less than their estimate for
triple point.

III. RAMP MODEL

Jagla@28# has recently presented a MC simulation stu
of a 3D CS fluid described by the potential

U~r !5`, r ,r 0 ,

U~r !5e
~r 12r !

~r 12r 0!
2g

~r 22r !

~r 22r 0!
, r 0<r ,r 1 ,

U~r !52g
~r 22r !

~r 22r 0!
, r 1<r ,r 2 ,

U~r !50, r>r 2 , ~3.1!

FIG. 17. Phase diagram showing the HDSS-LDTS transit
line calculated within the harmonic approximation~dotted line!,
from LSMC simulations~solid line!, and from Gibbs-Duhem inte-
gration ~dashed line!. Also shown is the melting curve taken from
Ref. @10# ~thick gray line!.
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PHASE BEHAVIOR AND THERMODYNAMIC ANOMALIES . . . PHYSICAL REVIEW E 66, 031509 ~2002!
with r 151.72r 0 ,r 253.0r 0 ,g50.31e. The form of this po-
tential is depicted in Fig. 1.

Using canonical ensemble~constant-NVT) MC simula-
tion, Jagla obtained the pressure as a function of system
ume for a 3D system of 300 particles. van der Waals lo
were observed in the measuredP(V) curves, suggestive o
the existence of a phase separation between a low-de
liquid ~LDL ! and a high-density liquid~HDL!. The critical
point of this transition~measured as the temperature abo
which the loops disappear! was reported to occur at the low
temperature ofT!'0.08. Additionally an anomalous in
crease in the density of the low density liquid was obser
with increasing temperature.

A loop in a P(V) curve below the critical temperature
instead of a flat region, is a finite-size artifact of the consta
NVT ensemble and as such cannot be regarded as an u
biguous indicator of a phase transition. In view of this, w
have attempted to corroborate Jagla’s findings for the
ramp model in greater detail, using simulation methods
signed for studies of fluid phase coexistence. Initially
sought to perform GCE simulations, close to the repor
location of the LDL-HDL critical point. Unfortunately, thes
proved extremely inefficient due to a very low acceptan
rate for particle transfers at these parameters. The result
report here instead derive from simulations within t
isothermal-isobaric~constant-NPT) ensemble@32# which, in
the low-temperature regime, proved considerably more e
cient than the GCE. Notwithstanding its greater efficien
use of the constant-NPT ensemble did not permit the stud
of very large system sizes. This problem is traceable to
method’s general inefficiency in the context of hard-core fl
ids, and stems from the necessity of rejecting all propo
volume contractions that result in a hard-core overlap. C
sequently, we were able to study only three system si
comprisingN5300, N5500, andN5800 particles, respec
tively.

Our studies revealed two fluid-fluid phase boundari
One, a liquid-gas line occurs at high temperature and
pressure; the other separates an LDL phase from a H
phase, as previously reported by Jagla@28#. To track these
boundaries, we utilized multicanonical sampling and his
gram reweighting techniques in the manner described in R
@29# to yield the coexistence forms of the density distributi
p(r) ~cf. Sec. II A!. The tracking procedure was initialize
near the critical point and followed the phase boundary do
in temperature until the simulations became too slow to c
tinue. A selection of coexistence density distributions fro
each phase boundary is shown in Fig. 18. The associ
phase diagram in theP!-T! plane appears in Fig. 19. Match
ing to the known universal form of the order parameter d
tribution @36,29# allows us to estimate the critical param
eters. The LDL-gas critical point lies atTC

! 50.2857(3),
Pc

![Ps2/e50.00723(1), and has an unusually low
critical density of rc50.10(1). The critical point of the
LDL-HDL boundary lies at Tc

!50.076(2),Pc
!

50.0341(5),rc50.378(3). Wenote that both phase bound
aries have a positive slope. Within the precision of our m
surements, the LDL-HDL phase boundary is linear while
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LDL-gas phase boundary exhibits a positive curvature. I
also apparent that the two phase boundaries are very
separated in the phase diagram. Since we were unab
probe the region of very low temperature, we cannot s
whether or not there exists a triple point between the g
low-density liquid, and the high-density liquid. It seem
more likely that both phase boundaries terminate in so
phases.

Jagla@28# observed thermodynamic anomalies in hisP-V
curves of the LDL phase, but did not trace their path throu
the phase diagram. We have sought to do so by measu
the number density and compressibility along isobars, st
ing at the LDL-HDL transition and increasing in temper
ture. The results can be seen in Figs. 20~a! and 20~b!, respec-
tively. One observes that forP!!Pc there is both a density
and a compressibility maximum at temperatures well in
cess of the LDL-HDL coexistence values. Well away fro
the critical point~at P!50.72Pc

!), comparison of the data
for the three system sizes indicates no significant finite-s
effects in the form of the density maximum@51#.

On increasing the pressure towards its critical value,
height of the compressibility peak grows. Additionally, th
temperature at which the maxima occur shifts closer to
coexistence curve. In this regime, we do see finite-size
ferences in the form of the density maximum. In particul

FIG. 18. The measured coexistence forms of the number den
distribution obtained in the manner described in the text, forN
5300. ~a! the LDL-gas coexistence boundary.~b! The LDL-HDL
boundary. Lines merely serve as guides to the eye.
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NIGEL B. WILDING AND JAMES E. MAGEE PHYSICAL REVIEW E66, 031509 ~2002!
the density maximum which is not visible atP!50.032 for
N5300, reappears very close to the coexistence curve
N5500 and N5800 @Fig. 20~a!#. The line of density
maxima as a function of pressure forN5300, is included on
the phase diagram of Fig. 19. The line intersects the coe
ence curve slightly below the second critical point. In vie
of the observed finite-size dependence of the density m
mum, it seem likely that in the thermodynamic limit, th
maximum will intersect the liquid-liquid line even closer
the critical point. We note, however, that the line of dens
maxima must terminate before the critical point is reach
This is because, at criticality, the system fluctuates fre
between the low-temperature HDL and the high-tempera
LDL phases, implying that any reduction in temperatu
leads to a density increase.

As regards the temperature behavior of the compress
ity, obtaining good statistics for this quantity is harder, b
cause it is measured via the second moment of the den
distribution. However, in contrast to the density, its ma
mum clearly vanishes well before the critical pressure
reached@Fig. 20~b!#. A likely explanation for this difference
is to be found in the fact that the compressibility exhibits
critical point divergence. This presumably swamps
anomalous compressibility maximum well before the critic
point is reached.

IV. SUMMARY, DISCUSSION, AND CONCLUSIONS

In this paper we have investigated the phase behavior
liquid state anomalies of two distinct CS models. Below,
summarize and discuss our results for each model in tur

For the 2D shoulder potential, we obtained the liquid-g
coexistence curve and studied how it evolves into the LD
sublimation line at the gas-liquid-LDTS triple point. In th
solid region of the phase diagram we employed lattice sw
MC techniques and Gibbs-Duhem integration to map
phase boundary between the LDTS and the HDSS from v
low temperatures up to the melting point. Analytical calc

FIG. 19. The liquid-gas and LDL-HDL coexistence lines in t
P!-T! plane obtained for theN5300 system size. Statistical unce
tainties are smaller than the symbol sizes. Also shown (L) is the
locus of the line of maximum density in the LDL phase.
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lations within the harmonic approximation suggested the
istence of a reentrant triangular solid phase at very high p
sures, the HDTS. The existence of this phase was confir
using lattice switch MC. Evidence was also found for
metastable LDTS-HDTS and associated critical point lyi
at low temperatures and high pressures, well below LD
melting temperature.

Considerable effort was devoted to probing the behav
of the liquid state anomalies in the number density and co
pressibility in the liquid phase. Maxima in the density a
compressibility were observed along two widely separa
lines of constantm. An inspection of configurations on eithe
side of the compressibility maximum indicated that its pre
ence is associated with the freezing of the liquid to t
LDTS. The double peaked nature of the density distribut
function at the temperature of the compressibility maximu
confirmed the existence of two distinct favored regions
density.

FIG. 20. ~a! The temperature dependence of the average num
density along selected isobars forN5300. Data are also shown fo
N5500 andN5800 at selected pressures. Lines are merely gui
to the eye. Arrows indicate the LDL-HDL coexistence temperat
for each isobar.~b! The corresponding estimates of the compre
ibility for N5300. Unless otherwise shown, the magnitude of s
tistical errors does not exceed the symbol sizes.
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Measurements of the temperature dependence of the c
pressibility and density maxima for a wide range of syst
sizes revealed pronounced finite-size effects. For sma
medium system sizes, these took the form of system
changes in the peak heights and peak temperatures. Inte
ingly, however, the differences between the results for
largest systems were much less pronounced than for
smallest systems. Finite-size difference between the sma
and largest systems, of the magnitude observed, are stro
indicative of a large correlation lengthj. The apparent con
vergence of the results for the compressibility peak sugg
that this correlation length islarge but finiteat the transition.
In such circumstances one would expect that in the reg
L,j, finite-size effects are great, while for system sizesL
*j, they begin to die away. In support of this, we note th
it is widely believed that the 2D freezing transition has
pseudocontinuous character, although the precise natu
the transition remains the subject of some debate@49,52#.

Our results for the density distributionp(r) suggest that
the density maximum~while clearly occurring at tempera
tures in excess of the freezing temperature!, is associated
with the first appearance of clusters of LDTS crystalli
structure within the liquid phase@53#. This is evidenced by
the subsidiary peak occurring at the LDTS density@cf. Fig.
8~b!#, and by the liquid phase snapshots just above the m
ing temperature, Fig. 7~b!, at the point where the densit
starts to fall rapidly. Since these solidlike clusters posse
lower local density than that of the coexisting liquid, the
presence reduces the average density. As the temperatu
lowered towards the freezing transition, the size and per
tence of the solid-like clusters increases, causing the ave
density to fall ever more rapidly@cf. Fig. 8~b!#. The shift of
the peak in the average density to lower temperatures
increasingL is a natural consequence of the fact that forL
&j, the apparent freezing point will occur at higher tem
peratures than in the thermodynamic limit.

We have also addressed reports of a liquid-liquid criti
point within cell theory for the 2D shoulder model. Our ow
cell model study~Sec. II C!, does reveal a second critica
point, but at parameters far removed from those quoted
Ref. @10#. We stress, however, that the appearance of a
ond critical point within cell theory is not a feature peculi
to CS potentials. Indeed in a recent reappraisal of cell the
for the 12-6 Lennard-Jones fluid@39#, we have shown tha
this model also exhibits a second critical point. Moreov
the second critical point occurring in both the Lennard-Jo
and CS models appears to be an artifact of the lattice-ba
nature of cell theory, terminating as it does a phase bound
between a liquidlike and a solidlike phase. In view of this
seems unlikely that cell theory will ever represent a use
approach for investigating the liquid phase behavior of
systems.

Taken together, our results lead us to conclude that
thermodynamic anomalies of the 2D shoulder model are
caused by strong liquid-state fluctuations associated with
proximity of a liquid-liquid critical point~metastable or oth-
erwise!. Instead we attribute them to the strong pseudoc
cal fluctuations associated with the 2D freezing transit
and the fact that the density of the LDTS is lower than tha
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the liquid. While we do not discount the possibility of
metastable liquid-liquid critical point somewhere within th
LDTS phase, it is difficult to see how it could~in the inter-
pretation of Ref.@10#! give rise to a compressibility maxi
mum of the scale we observe on two such widely separa
lines of iso-m. We further remark that our interpretation o
the origin of the anomalies is consistent with the recen
reported failure to observe their presence in 3D versions
shoulder models@12,54#. Here the freezing transition is ex
pected to be sharply first order in character, with no la
fluctuating clusters of the solid phase within the liquid. A
such, there will be little or no sign of the approach to free
ing.

Turning now to our results for Jagla’s ramp potential
3D, we find a liquid-gas coexistence curve at high tempe
ture and low pressure, and confirm the existence of a st
transition between a high-density liquid and a low-dens
liquid at lower temperature and higher pressure. The la
transition has a positive slope in theP-T plane, contrasting
with the results for most studies of metastable liquid-liqu
coexistence in models of water, which suggest a transi
line with negative gradient~see, e.g., Ref.@17#!. For both
transitions we have mapped a portion of the coexiste
curve and determined the critical parameters. Within
LDL phase, and below the temperature of the second crit
point, we find maxima in the density and compressibility a
function of temperature. In contrast to the 2D should
model, these anomalies are authentic, i.e., they are not a
ciated with the formation of an incipient phase. The locus
density maxima appears to terminate on the coexiste
curve very close to the second critical point.

Finally, with regard to the general issues raised by o
findings, the presence of a stable second critical point in
ramp model begs the question as to what features of
potential are responsible for its existence, when none is
served in other single component fluids such as the Lenn
Jones fluid. Although we have not yet studied this matter
detail, it seems likely that the potential minimum must
located at a sufficiently large radius relative to the hard co
otherwise the LDL-HDL transition is preempted by th
freezing transition. This mirrors the known requirements
the existence of a liquid-gas transition, which is stable w
respect to the crystalline phases only for an attractive po
tial of sufficiently large range@55#. It would be of consider-
able interest to examine the precise role of the interac
range on the stability of the LDL-HDL critical point, as we
as other factors such as the steepness of the soft core an
depth of the minimum. Such a study could benefit the g
eral understanding of the relationship between water
anomalies in real systems and second critical points, whe
metastable or otherwise@56#. We hope to report on this mat
ter in future work.
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