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We report extensive simulation studies of phase behavior in single component systems of particles interact-
ing via a core-softened interparticle potential. Two recently proposed examples of such potentials are consid-
ered; one in which the hard core exhibits a shou[@=adr-Lahijanyet al,, Phys. Rev. Lett81, 4895(1998],
and the other in which the softening takes the form of a linear rgtagla, Phys. Rev. B3, 061501(2001)].

Using a combination of state-of-the-art Monte Carlo methods, we obtain the gas, liquid, and solid phase
behavior of the shoulder model in two dimensions. We then focus on the thermodynamic anomalies of the
liquid phase, namely, maxima in the density and compressibility as a function of temperature. Analysis of the
finite-size behavior of these maxima suggests that, rather than stemming from a metastable liquid-liquid critical
point, as previously supposed, they are actually induced by the quasicontinuous nature of the two dimensional
freezing transition. For the ramp model in three dimensions, we confirm the existence of a stable liquid-liquid
(“second”) critical point occurring at higher pressure and lower temperature than the liquid-gas critical point.
Both these critical points and portions of their associated coexistence curves are located to high precision. In
contrast to the shoulder model, the observed thermodynamic anomalies of this model are found to be authentic,
i.e., they are not engendered by an incipient new phase. We trace the locus of density and compressibility
maxima, the former of which appears to terminate close to the second critical point.
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[. INTRODUCTION sition in a two-dimensional2D) system of CS particles.
These studies show that on reducing the temperature at con-
Much attention has been paid recently to the phase behagtant pressure, a maximum occurs in the density, while the
ior of single component systems of particles interacting viacompressibility passes through a minimum before subse-
the so-called core-softend@S) potentials. These potentials quently rising strongly as the system approaches the freezing
possess a repulsive core that exhibits a region of “softeningtransition. These thermodynamic anomalies, specifically the
in the form of a shoulder or a ramp. Physical motivation forrise in the compressibility with decreasing temperature, were
such models derives from the desire to encapsulate within attributed to the existence of a liquid-liquid critical point
simple two-body isotropic potential, the complicated featuregtermed the “second critical poinj” No direct evidence for
of systems interacting via anisotropic potentials. Notable exthis critical point was found in the stable liquid region. How-
amples of the latter include liquid metdl$], tetrahedrally ever, a power law extrapolation of the measured increase of
bonded molecular liquids such as phosporf2isand water the compressibility as a function of temperature, suggested
[3]. Performing such simplifications yield models that arethat a critical point may lie hidden within the stable crystal-
analytically and computationally tractable but which, oneline region. This proposal that the thermodynamic anomalies
hopes, nevertheless retain the qualitative physical features afe linked to a metastable second critical point, was rein-
the real systems they seek to describe. forced by mean-field calculations, based on a simple cell
Notwithstanding their relevance to real anisotropic sys-model. These were reported to indicate a critical point whose
tems, model CS systems have long been studied for thelocation was consistent with that found from extrapolation of
intrinsic physical intered4—8|. Indeed, it is well established the measured rise in the compressibility.
that they exhibit significantly richer phase behavior than con- The discovery of thermodynamic anomalies in CS fluids
ventional single component fluids. For instance, in certairmirrors similar findings in liquid watef13,14 close to the
CS models an isostructural solid-solid phase transition is obfreezing transition. The apparent connection with a second
served, accompanied by a solid-solid critical pdB9]. But  critical point lends weight to the hypothesis that a metastable
perhaps the most intriguing feature of core softening is thdiquid-liquid critical point may be responsible for the cel-
prediction that it may engender a demixing transition be-ebrated anomalous behavior of waféB,15—-17. Although
tween two liquids of different densities, distinct and addi-no compelling evidence for a liquid-liquid phase transition in
tional to the usual liquid-gas phase transition. supercooled water has yet been reported, there do exist a
The first suggestions along these lines came from the pekariety of indirect experimental and theoretical data favoring
turbative calculations of Stell and co-workel$,5] more  the propositionf18—20. Additionally, there is evidence for
than 30 years ago. Much more recently, Stanley and coliquid-liquid phase transitions in a number of other single
workers[10—12 have presented simulation evidence apparcomponent systems such as liquid molecular phospdi@jus
ently supporting the existence of a liquid-liquid phase tran-graphite[21], silica [22,23, as well as certain molecular
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models that take directional bonding into accol2#,25. 6— . — T
To date, most studies of second critical points in CS sys- sk — Shonlder potential | |
tems appear to indicate a liquid-liquid transition thatista- e
s 124 potential | _|
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r =r1/0

A. The liquid-gas and sublimation lines

tion results for a CS model which, he submits, provides evi-

rather than having a pronounced shoulder in the potential, of

bars and evidence of a liquid-phase density anomaly. 2

liquid-liquid critical points in core-softened models. Our ap-

and their critical points. We investigate two CS models,qashed curve corresponds to the ramp potential of [R&l. Also
which we study in 2D. The other is Jagla’s “ramp” potential

shoulder model we reproduce the phase diagram found in 2.1)
phase, focusing attention on the density and compressibilitsaussian well depth, anel the width of the Gaussian. In
critical point, these anomalies are instead associated with the 1 7 ;=1 w=5r,=1.5. Additionally, a cutoff was im-
mean-field calculations for the shoulder model. These, hOWﬁgure, one sees that in the core and tail regions, the potential
[10]. which is to generate a shoulder in the core.

ing of a stable second critical poif28]. We indeed confirm  sybsections we describe our results for each region of the
nonical MC sampling and histogram reweighting techniques,

confirms the existence of maxima in the density and comsition line is the most straightforwardly obtained feature of
an incipient new phase. We trace the locus of density an&arlo moves are generally high. Experience with a variety of
the critical point. preweighting[33], and histogram reweightini@4] provides

Il. SHOULDER MODEL but the basic strategy is to focus on the fluctuations of the
Lennard Joned.J) potential whose attractive tail is modified ability distribution functionp(p). Precisely at coexistence,

stablewith respect to crystallizatiof12,26,27. By contrast,
Jagla[28] has recently presented Monte CafMC) simula- 3t
dence of astableliquid-liquid critical point. This model dif-
fers from many other CS mode(see, e.g., Ref.10]) in that
the softening takes the form of an inclined linear ramp. Stud-
ies of the model found van der Waals type loops along iso-
Inspired by the above findings, we have attempted to Y P P P S
gather further simulation evidence for the existence of ’ )
proach employs a variety of Monte Carlo simulation meth- £ 1 The core-softened potentials studied in this work. The
ods tailored to the efficient study of liquid and solid phasesshoyider potential of Ref10] is represented by the solid curve; the
qualitatively distinct in character. The first is the “shoulder” shown for Comparisomotted Curv¢ is the standard Lennard-Jones
potential initially proposed by Sadr-Lahijangt al. [10], 12-6 potential.
[28], which we study in 3D. o\ 12 [ o\6 W(r—ro)\2
The main features of our results are as follows. In the 2D u(r)=4e (?) — (7) — €N ex;{ - (T) }
Ref.[10] and present results concerning the solid-solid phase
transitions. We then proceed to a detailed study of the liquid Here ¢ sets the LJ well depthy the length scale) the
anomalies and their finite-size behavior. Our results shovgommon with Ref[10], we have studied this model two-
that rather than being linked to a metastable |iquid-|iquiddimensions employing potential parameters values 1\
freezing of the liquid to a 2D solid of lower density via a posed atr = 2.50 for which no correction was applied. The
quasicontinuous phase transition. We also report cell modgbrm of the resulting potential is shown in Fig. 1. From the
ever, do not support the existence of a liquid-liquid critical closely approximates the LJ form. Closerty however, the
point reported on the basis of similar calculations in Ref.potential is dominated by the inverted Gaussian, the effect of
~ Our studies of the 3D ramp model deploy isothermal- \ve have studied the gas, liquid, and solid phases of this
isobaric MC simulation methods to Study the reported f|nd'rn0de| using MC Simu'ation techniques_ In the fo”owing
the existence of this point, and determine its parameters tghase diagram in turn.
higher precision than obtained previously. Using multica-
we map the liquid-liquid and liquid-gas coexistence lines to ] . o
high precision. Investigation of the low-density liquid phase In terms of computational tractability, the liquid-gas tran-
pressibility. In contrast to the shoulder model, these anomathe phase diagram because it lies in a region of relatively
lies are found to be authentic, i.e., they are not the result oflevated temperature, where acceptance rates for Monte
compressibility maxima, the former of which appears to ter-fluid models has showf29-31] that a combination of grand
minate on the liquid-liquid coexistence curve very close tocanonical ensembléGCE) simulations[32], multicanonical
an efficient means of tracing a liquid-gas coexistence curve.
Details of the implementation can be found in R¢20,31],
number density=N/L? in a square box of linear dimension
The first CS model we consider takes the form of a 12-6L; more specifically, we consider the number density prob-
by the addition of a Gaussian well centered on radiughis distribution is doubly peaked with equal integrated
r=ro, weight(area under each pedlB5]. For each chosen value of
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FIG. 2. (a) The measured density distributipiip) at a selection FIG. 3. (a) Density distributionsp(p) for the liquid at T

of state points along the liquid-gas and LDTS-gas coexistence lines 0-75, u"=—3.7 (left) and the LDTS afT*=0.65, u"=—3.8
of the shoulder model, obtained in the manner described in the textlight) for a system of siz& =100 (b) Snapshot configurations of
The inset shows a magnified version of the high-density regionthe liquid and LDTS(c) Measured radial distribution functiag(r)
Dashed lines serve as guides to the éeThe double peaked form for the liquid (left) and LDTS((right).

of p(p) at T*=0.68 corresponding to LDTS-liquid coexistence, . . . . .
obtained by histogram extrapolation of the triple point distribution [36]. This yielded the estimateT;=0.9555), uc=

at T*=0.72 shown in(a). —3.3732). . . .
As the temperature is decreased below its critical value,

the trough separating the peaks deepens and the peak densi-

the reduced temperatuf@ =kgT/e, coexistence is located tjes separate in the usual wgg6]. On reachingT*=0.72,
by tuning u*= u/kgT until the measureg(p) satisfies this  however, an interesting feature emerges—the liquid peak bi-
equal peak weight criterion. furcates, with a new narrow peak appearing on its low-

We have measured the form(p) along the liquid-gas density siddFig. 2(a)]. On further reducing temperature, this
coexistence curve, starting near the critical point. The simunew peak grows at the expense of the original peak. Below
lations were performed for systems of linear dimension T*=0.6 only the new peak remains.
=100 andL=12.5r. A selection of coexistence distribu- The appearance of three peakspfp) at T*=0.72 is
tions for the larger system size are presented in Rig. 2n  suggestive of a triple point. In order to identify the phases
the vicinity of the liquid-gas critical point the two peaks are involved, we have examined the structure of configurations
guite close together and the trough separating them is shadtaving densities close to those of the peaks. The lowest-
low. In principle, the critical temperature can be estimateddensity phase, having<0.02 is immediately identifiable as
precisely by employing finite-size scaliti§SS methods ac- a gas phase. In order to isolate the two high-density phases,
cording to the approach described in R¢&6,29. However, we studied temperatures slightly above and beldWw
as the critical behavior is not the principal focus of the=0.72. Snapshot configurations and measurements of the ra-
present study we have not performed a full FSS analysigdial distribution functiong(r) for the L =100 system[Fig.
Instead we obtained an approximate estimate of the critice(a)] show that abov@™=0.72 the system is liquidlike, hav-
parameters by tunind™ and p* until p(p) matches the ing a nearest neighbor distance corresponding to the radius
known universal fixed point form of the order parameter dis-of the shoulder in the potential. BeloW*=0.72, the high-
tribution function appropriate to 2D Ising universality class density phaséwhich has a densitlessthan that of the lig-
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1 - - - - @ du*/dT* of this coexistence line is negative, as mandated by
N ° the Clausius-Clapeyron equation. A portion of the LDTS-
ooks ° ] liquid coexistence line was estimated by histogram reweight-
o o ing the triple point data for thé =120 system size. The
o A results[included in Fig. 4b)] were obtained by tuning™
*[_o.s: o and p* such as to maintain both a liquid and a solid peak in
P o p(p) [cf. Fig. 2b) for an example distributiop It was sub-
) o sequently found, however, that the locus of the LDTS-liquid
0.7¢ o line exhibits large finite-size effects; specifically it shifts to a
: lower temperature with increasing system size. We shall ad-
06 . . . . L 0 dress this matter in detail in Sec. 1l B, where we also present
0 0r 02 03 04 05 06 a more accurate estimate for the LDTS-liquid coexistence
boundary.
3.3 T T T T T T T T T
L ® B. Liquid-solid transitions and thermodynamic anomalies
35 o . In this section we consider the properties of the liquid
- o iple "¢ . phase and its freezing behavior. These have been investi-
5370 o o Pomt voo ] gated by means of G(_:E simulat?ons condugted along two
L .,j bo000°° °° t+ lines of constant chemical potential, one havjag=—3.0
39 | b0’ e and the other having.*= —3.5. Simulation runs were per-
L o ° ° ;‘;ﬂftﬂl ] formed at a number of selected temperatures along both iso-
a1k 0?® Gas i ©* lines, extending from the freezing point up 1=0.9.
| o° ] The principal observable recorded in each run was the in-
43 ° L stantaneous density, the fluctuation spectrum of which per-
“05 055 06 065 07 075 08 085 09 095 1 mits construction of the density distributiga{p) (accumu-
T lated as a histogramand thence evaluation of the average

FIG. 4. (a) The liquid d LDT _ lines i density(p) and the compressibility.
" GT 'l(a) ebthw d—gas é’m - dS_- get‘z ccthk);)lstTehnce NES N The data from the complete set of runs performed along

€p-'~ piane, obtained as described in the - N COITe- — aach isop ™ line, were combined self-consistently within the
sponding phase diagram in the-T* plane. Also shown is a seg- - . S

o S . g : : multihistogram framework34]. Histogram reweighting was
ment of the finite-size shifted LDTS-liquid coexistence line ob- th | dt telv int late into th . f
tained forlL = 120 via reweighting of the triple point histograrsf. en emp oyg 0 acgura ely interpo a(.a Into . N reglons_ 0
Fig. 2(b)]. temperature intermediate between the simulation state points.
In order to allow assessment of finite-size effects in the re-

uid, see Fig. &)] is a 2D solid of triangular symmetry, with sults, this procedure was repeated for five system sizes:

a nearest neighbor distance consistent with the radius of the 17.50,22.50, 300,350, andL=400. For the largest sys-
potential minimumr, (cf. Fig. 1). This is the low-density tem sizes, reliable histogram extrapolation necessitated runs
triangular solid(LDTS) identified in Ref.[10]. at ten different temperatures along an jsb-line. For the

Generally speaking, GCE Monte Carlo is unable to deasmallest system sizes, five simulations proved sufficient.
well with solid phases due to the very low acceptance rate Figure 5 shows the measured finite-size dependence of the
for particle exchange moves at typical solid densities. In the&eompressibility foru*=—3.0. One observes that on reduc-
present case, however, it turned out to be possible to folloving the temperature, the compressibility passes through a
the sublimation line to temperatures considerably below thashallow minimum atT*~0.75, before rising strongly to a
of the triple point because of the unusually low density of thepeak. The position of this peak is, for the smaller system
LDTS. Our resultfFig. 4@)] show that the density of the Sizes, strongly finite-size dependent, moving both to lower
LDTS remains constant within the resolution of our densitytemperature and becoming considerably sharpet @s-
scale. This finding would appear to reflect the fact that thecreases. For the two largest system sizes-850 and L
functional form of the potential minimum in which the par- =400) there is, however, relatively little difference in the
ticles reside, is approximateymmetridit is Gaussiap im- ~ peak height or position, which lies at*=0.57q1). We
plying that there is no energetic advantage of contractionpostpone detailed discussion of this finite-size behavior until
over expansion. Sec. IV.

Figure 4b) shows the liquid-gas and sublimation lines in ~ The increase in the compressibility is traceable to a wid-
the u*-T* space. Overall, little system size dependence wasning ofp(p). In order to clarify the physical origin of this
observed in the locus of the liquid-gas and LDTS-gas coexeffect, it is instructive to examine the time evolution of the
istence lines. A notable exception was the neighborhood ofystem density for the largest system slze 400 at the
the triple point at which the LDTS, liquid, and the gas, all temperature for which the peak occurs. A representative por-
coexist. This point marks the start of a coexistence line betion of this evolution is shown in Fig.(6). Clearly there are
tween the LDTS and the liquid. Because the solid is lesgwo regions of preferred density, and a substantial density
dense than the liquid with which it coexists, the gradientautocorrelation time associated with each. Figufie) @lis-
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FIG. 5. The measured temperature dependence of the compress-
ibility == BV((Ap)?) for u*=—3.0 for the system sizes shown in
the key. The curves were obtained from multihistogram extrapola-
tion of the data from a number of individual simulations, as de-

scribed in the text.
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plays the density distributiop(p), for the largest two sys-
tem size. These exhibit a double-peaked structure. The in-
crease in the compressibility reflects the wideningp @) as

the double peaked structure develops.

The double peaked form g¥(p) suggests that two dis-
tinct phases coexist at the temperature of the compressibility
peak. To investigate this matter further, we have studied the
configurational structure at temperatures slightly below and
above the peak temperature. Representative snapshots are

0.615
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Q. 0.595

0.585H

(a)

057 i L
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FIG. 6. (a) A portion of the time evolution of the density for
L=400 at T*=0.576. (b) Density distributionsp(p) for L
=350,400 at the temperature of the compressibility maximum.

AWX 1 .
8.56 0.57 0.58

059 06 061 062 063
P

FIG. 7. Typical snapshot configurations taken from the
=350 system atu*=-—3.0. (@) T*=0.55, the system is in the
LDTS phase(b) T*=0.6, the system is in a liquidlike phase, but
displays clusters of crystalline ordering, one of which is ringed.

shown in Fig. 7. At a temperaturé; =0.55, below the tran-
sition, Fig. 7a) shows the presence of long-ranged transla-
tional order(on the scale of our system sjaa the form of a
triangular lattice. This we associate with the LDTS. Rt
=0.6, above the temperature of the compressibility maxi-
mum, Fig. 1b) shows that the system is clearly noncrystal-
line. There is, nevertheless, evidence for substantial clusters
of LDTS-like structure, one of which we have indicated in
the figure.

We have also obtained the temperature dependence of the
average density, the finite-size behavior of which is shown in
Fig. 8@). One sees that as temperature is decreased, the den-
sity rises to a peak, before falling rapidly to a lower value.
The peak temperature initially shifts to lower values as the
system size increases, but seems to converge for the largest
systems to a value higher than that to which the compress-
ibility maximum converges. We find that the temperature at
which the density starts to fall rapidly, coincides with the
first appearance of a subsidiary peak in the density distribu-
tion P(p) for all systems size$cf. Fig. 8b)]. This peak
occurs at the same density as the lower dern&iyTS) peak
in Fig. 6(b) and is thus indicative of infrequent fluctuations
of the system into the solid phase.

Taken together, the above findings suggest that the ther-
modynamic anomalies are tied to the liquid-LDTS freezing
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3 o ° FIG. 10. The phase diagram of the 2D shoulder model in the
50f °° ° 7 p*-T* plane, obtained in the manner described in the text. No
40'_ ° ° ] analysis of finite-size effects has been performed for the HDSS

) N o ] melting line.
B30k o ° . . . . L
S g the height of the maximum in the compressibility is some
20f & . . 30% less than agi*=—3.0.
il o ] Having located two coexistence state point on the LDTS
%Q%“ ] melting line, a number of further simulations were performed
0 1 L L L (for the L=400 system sizgto trace out the whole coexist-
057 058 059 0")6 o6l 062 063 ence line. This was identified as the locus of compressibility

maxima. The choice of state points for these runs was guided
by histogram extrapolation of the existing coexistence data.
FIG. 8. (8) The measured temperature dependence of the avelzgr eachy* studied, visual checks were made of configura-
age density fop.” = — 3.0, for a range of system sizab) Number  iqng at temperatures either side of the compressibility maxi-
density distribution,p(p), for the L=400 system size aw’= 1y in order to confirm that the line of maxima coincides
—3.0,T"=0.58, corresponding to the point where the density CUNVe, i the freezing line. The results are shown in Fig. 10,

starts to fall in(a). together with the liquid-gas and sublimation lines determined

. . . . . in Sec. Il A.

line and not a buried critical point. If so, then similar behav-'" > N

ior should be expected all along the freezing line. That this i%y Ii\l/ggrteri;g Spr(])?r:\tlz t?haet ;h:S IL%TFSS T;;Jti'(;]gpcl)'ir:]? ; kl)g);?ded

indeed the case is confirmed by our results fidr= — 3.5. ) L 9eee S

This line intersects the LDTS melting curve close to theﬁim:w’-;::si? trs'pfar;o'gé;gﬁlgggg t:::sgq;l[dhil‘zj*s’ﬁ?g a

gas-liq;id)—LD'rl]'S triple p((j)int at a tempe]rtat#re o’ HI?)SS phasye V\(/qas first reported inpR[df0] For vglueé ofu*

=0.6282). Theassociated measurements of the compress- - . PRI .

P : ; e . . exceeding that of the latter triple point, the liquid freezes into

ibility (Fig. 9 dls_play finite-size effects whose magnitude |sthe HDSg rather than the LIIDDTSF.) We atten?pted to map the

c_ogn g a[?hbelen:(;,ir:f (;]i?fte?err??éeir st?ﬁ ;t’ ftgro ;e (i)vbesne r;/egéfr?]# siz eIi0|uid—HDSS coexistence curve. Unfortunately, at the densi-
e 9 y ties prevailing near this line, our GCE algorithm becomes

02 : : : very inefficient due to a low acceptance rate for particle
T transfers. This pr_ev_ented us f_rom _studylng I_arge system sizes
2100 and from determining the finite-size behavior of the transi-

0.15 0—0 L=40.00 . tion. We have therefore only be able to determine a limited

portion of its locus for one small system of size- 100. The
results(Fig. 11), confirm that the HDSS has a square lattice
exhibiting quasi-long-ranged order. The associated estimate
of the freezing line for this system size is included in Fig. 10.

0.05

C. Cell theory calculations

Referencd 10] offers direct evidence for the existence of

06 07 075 08 a second critical point in the 2D shoulder model in the form
T of a mean-field cell theory calculation. This was reported to

show a liquid-liquid critical point whose position was con-

FIG. 9. As Fig. 5, but foru* = —3.5. sistent with the extrapolation into the stable crystalline re-
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FIG. 12. Phase diagram for the 2D shoulder model calculated
via the cell theory described in the tex®) The P*-T* projection.
(b) The T*-p projection.

The Gibbs free energy per particle of the model is given
by

E
g(v)=—KgTInvio.+ 7°+ Pu. (2.2)

HereE, is the “ground state energy”—the energy per par-
ticle if all occupied their lattice sitest. is a constant “com-
munal entropy” tern40], which attempts to account for the
entropy lost due to the localization of particles within cells;
anduv; is the “free volume,”

a(n

Uf:f ef[E(r)*Eo]/kBTdr, (2.3

with E(r) the “cell potential,” i.e., the interaction energy of
r a particle at a positiom within its cell. If ¢ neighboring
FIG. 11. (8 Density distributionp(p) for the HDSS atT* particles are assu.med to be ;mgargd over the interaction shell
=0.6, u*=—2.0 for a system of size=10c-. (b) A typical snap- and the interparticle potential is given hyR), the total
shot configuration(c) Measured radial distribution functiog(r). energy of the particl&(r) is given by

gion of the simulation measurements of the compressibility.
In this section we detail our attempts to follow up on this Lhe”u(R)dA
finding. E(N=c————. 2.4

Cell theory was first proposed by Lennard-Jones and De- 4ma
vonshire[37] and a description of the method can be foundg e ormally performs this integration numerically with fur-
in Refs.[38,39. Within the framework of the 3D model, her nymerical integration to calculate the free volume ac-
particles are considered to be localized in singly OCCUp'eQ:ording to Eq(2.3 and Gibbs free energy for a given choice
spherical “cells” of volumev =V/N and radiuss, centered  of number densitp=v 1.
on the sites of a fully occupied lattice of some prescribed e have obtained the 2D cell theory phase diagram of the
symmetry. A particle in its cell is considered to interact with potentiaj of Eq(21) in order to compare with the results of
its ¢ nearest neighbors “smeared” around the surface of @&ef. [10]. Our study employed a triangular lattice of cells
further sphere of radiua concentric with the cell. The vol- with parameters =6 andy= 2/y/3. The results are shown in
ume of this “interaction sphere” is related to the cell volume Fig. 12a). The phase diagram exhibits four separate phases,
by a=yv, wherey is a lattice-dependent constant, chosenwhich we have labeled)—(iv), delineated by first order co-
so that for a primitive unit cell of volume the lattice pa- existence linegsolid curves. In the case of phasds) and
rameter will be the radius of the interaction shell. (i), we were unable to follow the coexistence line right
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FIG. 13. The cell potential, defined in the text, corresponding to
the phases shown in Fig. 1@&)—(c) correspond to phasés—(iii ),
respectively, calculated at the triple point. Padi(e) correspond 9.
to phasediii) and (iv), respectively, calculated at coexistence for
T*=0.5.

FIG. 14. Cell theory phase diagram for the 2D shoulder model,
neglecting the ground state terf®y, in the Gibbs free energisee
down to zero temperature, because ph@séias a density text). (@) The P*-T* projection.(b) The T*-p projection. Phase&)
lower than what can be represented by the precision of ouand iii) are solidlike, while phaséi) is liquidlike.
calculations. We have therefore simply extrapolated the mea-
sured portion using a linear fitotted ling. unique feature of the CS potential, as we have recently

While no theory based on a prescribed underlying latticeshown[39] in cell theory studies of the 12-6 LJ potential.
can provide an unambiguous representation of fluid phasagere too, two critical points we found; an artifact critical
or crystalline solids of arbitrary structure, a plausible identi-point terminating the liquid-solid transition and another, a
fication of the phases can nevertheless be made by examifiquid-gas critical point. The latter had not hitherto been re-
ing their associated cell potentiggr). For phasesi), (i),  ported in the literature, while the artifact critical point had
and(iii ), these have been calculated at their triple point, perpreviously been mistaken for the liquid-gas critical point.
mitting a direct comparison under identical conditionddf  The appearance of artifact critical points appears to be symp-
and T*. The results are shown in Figs. (83-9. The cell tomatic of the fact that, owing to its lattice-based character,
potential at coexistence between phagiés and (iv) are  cell theory cannot properly represent the inherently disor-
compared in Figs. X8-¢. Inspection of Fig. 1@&) shows dered nature of liquid phases.
that the cell potential for phadév) displays a strong mini- We have found no evidence for a fluid-fluid phase transi-
mum at the cell centar=0 (i.e., at the lattice sifg allowing  tion additional to the liquid-gas transition in the core-
us to identify this phase as solidlike. By contrast, for phasesoftened potential. The artifact critical point we do find is far
(i), the cell potentia[Fig. 13a)] has a noncentral minimum removed in the phase diagram from the second critical point
and, as such, would be unstable as a lattice phase. Since treported in Ref.[10]. However, the formulation of cell
density at which the minimum occurs is low, we tentatively theory reported there, appears to differ from the traditional
assign this as gaslike. Similar arguments suggest that phagaplementation in that it neglects ground state terms in the
(iii) is a fluid[Fig. 13c)] and, because it is denser than phasepotential [41]. In view of this, we have also obtained the
(i), and separated from it by a first order phase transitionphase diagram for this version of the theory. The res#i.
liquidlike in character. Additionally, at high temperatuaf 14) display qualitative differences from those of the more
the scale of our figue we find a critical point terminating conventional formulation we have described. In particular,
the first order line of coexistence between phageand (ii). there appears to be no liquid-vapor transition. There are,
Finally, the cell potential for phas@ ) shown in Fig. 18)  however, two critical points, although both appear to be ar-
exhibits a deep minimum at the lattice site, suggesting it igifacts of the cell theory, one terminating the low-pressure
solidlike. solid-liquid coexistence and the other terminating the high-

Given these assignments, a resemblance is evident bpressure solid-liquid line. Neither can be considered to ter-
tween Fig. 12a) and that found by simulatioriFig. 10. minate a liquid-liquid transition and neither is located in the
Most strikingly, the freezing transition between pha&é&s  general vicinity of that reported in Ref10].
and (ii) displays a negative gradient as found in the simula-
tions. Moreover, the phase diagram seems to exhibit a second
critical point, terminating the line of coexistence between
phasediii) and(iv). However, given the previous identifica- We have investigated the solid phases of the 2D shoulder
tion of phase(iii) as liquidlike and phasév) as solidlike, model as a function of temperature and pressure using a
such a second critical point has no physical counterpart. Fucombination of analytical and simulation methods. Our mo-
thermore, it should be stressed that its appearanc®tisa  tivation for doing so was to check for the existence of an

D. Solid-solid transitions
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FIG. 16. T*-p projection of the 2D shoulder model phase dia-

FIG. 15. P*-T* projection of the 2D shoulder model phase dia- gram calculated within the harmonic approximation. Solid lines in-
gram calculated within the harmonic approximation. Circles indi-gicate the equilibrium coexistence densities between phases.
cate the state points at which calculations were performed, curvesashed lines indicate the binodal for the metastable LDTS-HDTS

guide the eye. Solid lines indicate transitions between thermodypansition. Dotted lines correspond to the spinodals of the HDTS
namically stable phases. The dashed line represents the locus withiihd LDTS phases.

the stable square lattice phases at which the metastable phase
changes from being the LDTS to the HDTS. The dot-dashed Iingjg lines. At very low pressure, an open triangular lattice

shows the melting curve reported in REE0]. phase(LDTS) is stable, which transforms to a dense square
lattice phas€HDSS on increasing pressure, in line with the
isostructural solid-solid critical point, such as that seen inegylts of Ref.[10]. At a very high pressure, this dense
other CS model§5,9]. The large fluctuations associated with square lattice undergoes a transition to a new dense triangu-
such a critical po_in(and with the assopiated hexatic phasesigr |attice phasehigh-density triangular solid, HDT)SThe
known to occur in 2D systemist2]), might complicate the  thjrd transition line occurs at intermediate pressure, and is
interpretation of liquid phase thermodynamic anomalies.  jsostructural, separating LDTS and HDTS phases, both meta-
Our investigation of the solid phases begins by perform=iaple with respect to the square lattice phase.
ing analytical calculation based on the harmonic approxima- The existence of a stable square lattice phase is unusual.
tion (HA). These supply results which, whilst exact in the |n the case of the shoulder potential, however, the lattice has
low-temperature limit, lose accuracy with increasing tem-pearest neighbors sitting in the minimum of the Lennard-
perature. They are thus used as a starting point for direcfones part of the interaction potentials, and is stabilized
simulations of lattice-lattice phase coexistence using the 'a'fthrough second-nearest neighbors sitting in the deep Gauss-
tice switch Monte CarldLSMC) method[43—-49. Whilst  jan well part[cf. Fig. 11c) and Fig. 1. We find that if
powerful, we found that for this particular model LSMC be- second-nearest neighbor interactions are “turned off,” the
comes inefficient as melting is approached owing to expresence of the square lattice is completely suppressed.
tended sampling times caused by a significant defect concen- we have calculated the coexistence lines for reduced tem-
tration. Thus we turn at high temperature to Gibbs-Duhenperatures up td*=0.9. The “hidden” isostructural line fin-
integration which provides a faster, though less accurate agshes afT*=0.205, whilst the LDTS-HDSS line ends &t
proach to tracing coexistence curves. , =0.575. In both these cases, the transition line ends because
Both the HA and LSMC approaches are designed fokne 1ot finding algorithm cannot identify a coexistence vol-
studying solid phases. However, they share a common profme for the LDTS phase which is mechanically stable within
lem, namely, that rather than predicting which of the set ofne approximation. In the case of the LDTS-HDSS transition,
possible crystal lattice occurs, a chosen subset of latticeg,ig probably indicates approach to melting and the associ-
must be proposed and checked against one other for relativgeq hreakdown of the approximation. In the case of the hid-
stability. In this work, we only consider the possibility of gen jspstructural transition, this could simply be a point be-
square and triangulathexagonal lattices, these being the yong which the LDTS phase loses mechanical stability, or it
ones observed in the original worlkO0]. It is, nevertheless, coyld indicate approach to a hidden isostructural critical
possible that other stable lattices may exsste Ref[8] for it (the associated fluctuations of which would also cause
an examplg breakdown of the approximationif there is a hidden isos-
tructural critical point, with any associated region of hexatic
phase stability42], we note that it would be at far too high
Harmonic approximation calculatiof46] have been per- a pressure to be in any way associated with the thermody-
formed for a 16< 16 system of particles on both square andnamic anomalies noted in the liquid phase.
triangular lattices. Coexistence lines were located by using a The HDTS-HDSS coexistence line continues across the
Newton-Raphson root-finding algorithf@7] to solve for  region we have checked; its only peculiarity is that it passes
conditions of equal pressure and Gibbs free energy. The réhrough a pressure maximum at aroufid~0.51. From the
sults are presented in Figs. 15 and 16 and show three transHausius-Clapeyron equatiomP/dT=AS/AV, we know

Harmonic approximation studies
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that passing through this point with increasing temperature,
the entropy difference between the HDSS and HDTS phases
changes sign. We suggest that at low temperatQndere
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~— Lattice Switch MC
Melting curve from Ref. [10]

---- Gibbs-Duhem
<o Harmonic approximation

particles remain close to their lattice sitdbe greater en-
tropy of the square lattice reflects its larger volume. With 54
increasing temperature, however, particles in the triangular | oM
lattice will be free to explore an ever greater region of con- AT e
figuration space, whilst those in the square lattice will be
constrained by the conditions on the positions of second-
nearest neighbors necessary to maintain mechanical stability.
Accordingly the square lattice will have lower entropy.

LDTS

06 038

Lattice switch Monte Carlo and Gibbs-Duhem integration studies T

_ At high temperature, or on approaching the melting tran- £ 17, phase diagram showing the HDSS-LDTS transition
sition, the HA breaks down. We have therefore used our HAine calculated within the harmonic approximatiédotted ling,
results as the starting point for a method which uses direGtom LSMC simulations(solid line), and from Gibbs-Duhem inte-

two-phase simulation of coexisting solid phases—LSMCgration (dashed ling Also shown is the melting curve taken from
[43—45. Our implementation of LSMC is similar to that Ref.[10] (thick gray line.

described in Ref.45], except that we operate in the constant-

NPT ensemble32], and as such our order parameter is thecyrve to higher temperatures using Gibbs-Dul@D) inte-
difference in enthalpyAH, between conjugate pairs of con- gration [50,32. This involves performing separate single
figurations. In addition to alternating between different sethase simulations at a coexistence state point, from which
of lattice vectors, our lattice switch move also alters the asthe slope of the coexistence curve is estimated via the
pect ratio of the box between 1(for a square latticeand  Cjausius-Clapeyron equation. Integration of this equation al-
JV312:\213 (for a triangular latticg [48], and adds a lows the locus of the coexistence line to be tracked. The G-D

lattice-dependent scaling factor to move between the differmethod assumes nothing about the coexisting phases apart

ent characteristic volumes for each phédetermined by two fr_om th_ﬁlt they ar_e(mete) sta_bl_e over the time scale of the
short single phase simulations at the state point simulations, and is both efficient and easy to perform. Our

LSMC simulations were performed for both the LDTS- GP implementation employed a simple two-step trapezoid
HDSS and HDSS-HDTS coexistence lines for a system Opredlctor—corr.ectqr mt_egratc[ﬂ?]; the results are shown as
256 particles. Whilst metastable triangular phases of the cot’® dashed line in Fig. 17. We see that the GD estimated
rect volumes for the hidden isostructural transition wereCO€Xistence I*'”e smoothly extends the LSMC line, up to a
found at low pressure, their lifetime in a Monte Carlo run temperaturel”=0.525; above this temperature, the triangu-
was insufficient for simulation of coexistence. For the la@r lattice phase was observed to melt. This coexistence line
HDSS-HDTS transition, simulations were performed at twol€rminates at a temperature which agreeishin erron with
low-temperature state points on the phase boundary to verifjf?® melting curve estimated by Sadr-Lahijaetyal. [10], but
its existence: coexistence was foundTat=0.1P*=16.60 at. a pressure significantly less than their estimate for the
andT*=0.2P*=16.73. These results agree well with those!"Ple point.
from the HA.

Results from our LSMC simulations for the LDTS-HDTS
line are shown in Fig. 17. Up to a reduced temperature of
T*=0.2, these agree well with the HA results, but above this Jagla[28] has recently presented a MC simulation study
temperature the simulation coexistence line lies at higheff @ 3D CS fluid described by the potential
pressures than the HA coexistence line. This is to be ex-
pected, since the HA is unlikely to deal well with the very
low density of the LDTS phase.

As the temperature was raised abdve=0.2, the LSMC
method was found to become increasingly less efficient. An
essential aspect of the method is to bias the phase space
sampling such that the system regularly samples configura-
tions in which the particles are very close to their lattice
sites. As the melting temperature was approached, this be-
came progressively more problematic, due to an increase in
the defect concentration. Indeed the presence of such defects
is well known to be a feature of 2D meltiig9]. Once the
reduced temperatur€*=0.4 was reached, the problem be-
came so severe that use of LSMC was no longer feasible. It
was therefore decided to continue tracing the coexistence

. RAMP MODEL

U(r)y=o, r<rg,

(rl_r)_ (ry—r)
(ri—=ro) y(rz_ro)'
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with r{=1.7%,,r,=3.0ry,y=0.31e. The form of this po- 100 — T T T T
tential is depicted in Fig. 1. X o T'20.286
Using canonical ensembleonstantNVT) MC simula- : :&ij%: 1
tion, Jagla obtained the pressure as a function of system vol- et 10251
ume for a 3D system of 300 particles. van der Waals loops > 1=0241] |
were observed in the measurlgV) curves, suggestive of %
the existence of a phase separation between a low-density -
liguid (LDL) and a high-density liquidHDL). The critical
point of this transition(measured as the temperature above Q,*(fx J
which the loops disappeeawas reported to occur at the low I R aosals ARk
temperature ofT*~0.08. Additionally an anomalous in- B oeeen gc0c0c® AN |
crease in the density of the low density liquid was observed () : o, OB 02 025
with increasing temperature.
A loop in a P(V) curve below the critical temperature, 40— L B B
instead of a flat region, is a finite-size artifact of the constant- L o0 T'=0.075
NVT ensemble and as such cannot be regarded as an unam- { ::j?ﬁ'g;(s’
biguous indicator of a phase transition. In view of this, we 30 wxT000| |
have attempted to corroborate Jagla’s findings for the 3D ! j
ramp model in greater detail, using simulation methods de- - 4
signed for studies of fluid phase coexistence. Initially we 20r i ]
sought to perform GCE simulations, close to the reported i *
location of the LDL-HDL critical point. Unfortunately, these : P
proved extremely inefficient due to a very low acceptance
rate for particle transfers at these parameters. The results we
report here instead derive from simulations within the

isothermal-isobari¢constantN PT) ensembld32] which, in

the low-temperature regime, proved considerably more effi-  (b)
cient than the GCE. Notwithstanding its greater efficiency,

use of the constaritP T ensemble did not permit the study  FIG. 18. The measured coexistence forms of the number density
of very large system sizes. This problem is traceable to th@istribution obtained in the manner described in the text, Nor
method’s general inefficiency in the context of hard-core flu-=300. (a) the LDL-gas coexistence boundafi) The LDL-HDL

ids, and stems from the necessity of rejecting all proposetioundary. Lines merely serve as guides to the eye.

volume contractions that result in a hard-core overlap. Con-

sequently, we were able to study only three system sizeg,p|-gas phase boundary exhibits a positive curvature. It is
comprisingN =300, N=500, andN=800 particles, respec- also apparent that the two phase boundaries are very well
tively. separated in the phase diagram. Since we were unable to
Our studies revealed two fluid-fluid phase bOUﬂdarieSprobe the region of very low temperature, we cannot say
One, a liquid-gas line occurs at high temperature and lowyhether or not there exists a triple point between the gas,
pressure; the other separates an LDL phase from a HDlgw-density liquid, and the high-density liquid. It seems
phase, as previously reported by Jaffl8]. To track these more likely that both phase boundaries terminate in solid
boundaries, we utilized multicanonical sampling and histophases.
gram reweighting techniques in the manner described in Ref. Jagla[28] observed thermodynamic anomalies in Ria/
[29] to yield the coexistence forms of the density distributioncyrves of the LDL phase, but did not trace their path through
p(p) (cf. Sec. Il A. The tracking procedure was initialized the phase diagram. We have sought to do so by measuring
near the critical point and followed the phase boundary dowRhe number density and compressibility along isobars, start-
in temperature until the simulations became too slow to CONing at the LDL-HDL transition and increasing in tempera-
tinue. A selection of coexistence density distributions fromiyre. The results can be seen in Figs(a2@nd 2@b), respec-
each phase boundary is shown in Fig. 18. The associateflely. One observes that f&* <P, there is both a density
phase diagram in the*-T* plane appears in Fig. 19. Match- and a compressibility maximum at temperatures well in ex-
ing to the known universal form of the order parameter disess of the LDL-HDL coexistence values. Well away from
tribution [36,29 allows us to estimate the critical param- the critical point(at P*=0.72P%), comparison of the data
eters. The LDL-gas critical point lies alc=0.28573),  for the three system sizes indicates no significant finite-size
P;=P0?€=0.0072%1), and has anunusually low effects in the form of the density maximufad].
critical density of p,=0.1Q(1). The critical point of the On increasing the pressure towards its critical value, the
LDL-HDL  boundary lies at T:=0.07§2),P; height of the compressibility peak grows. Additionally, the
=0.034%5),p.,=0.3783). We note that both phase bound- temperature at which the maxima occur shifts closer to the
aries have a positive slope. Within the precision of our meaecoexistence curve. In this regime, we do see finite-size dif-
surements, the LDL-HDL phase boundary is linear while theferences in the form of the density maximum. In particular,
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FIG. 19. The liquid-gas and LDL-HDL coexistence lines in the oot rrre e
P*-T* plane obtained for thbl=300 system size. Statistical uncer- r I i e--o P:=0,015 7
tainties are smaller than the symbol sizes. Also showr) (s the 18+ 4 B8P =0.02 i
locus of the line of maximum density in the LDL phase. i 1 yA if ;ﬁﬁi‘” ]
. . L .. \ i 44 p'=0032 1
the density maximum which is not visible Bt'=0.032 for l4r AR ©--0 P*=0.034 g
N=300, reappears very close to the coexistence curve foy L i
N=500 and N=800 [Fig. 20@)]. The line of density 1ok % 1
maxima as a function of pressure fde= 300, is included on - = :
the phase diagram of Fig. 19. The line intersects the coexist 5 o ]
ence curve slightly below the second critical point. In view 6} o SUEEGg -
of the observed finite-size dependence of the density maxi- [ 2 T ]
mum, it seem likely that in the thermodynamic limit, the L

maximum will intersect the liquid-liquid line even closer to  dos 007 009 0.1 013 015 017
the critical point. We note, however, that the line of density T
maxima must terminate before the critical point is reached.
This is because, at criticality, the system fluctuates freely
between the low-temperature HDL and the high—temperaturg
LDL phases, implying that any reduction in temperature

FIG. 20. (a) The temperature dependence of the average number
ensity along selected isobars fér=300. Data are also shown for
L N=500 andN=3800 at selected pressures. Lines are merely guides
leads to a density increase. . ., .to the eye. Arrows indicate the LDL-HDL coexistence temperature

As regards the temperature behavior of the COmpreSSIl:"If'or each isobar(b) The corresponding estimates of the compress-

ity, obtaining good statistics for this quantity is harder, be-jyjjity for N=300. Unless otherwise shown, the magnitude of sta-
cause it is measured via the second moment of the densittical errors does not exceed the symbol sizes.

distribution. However, in contrast to the density, its maxi-

mum clearly vanishes well before the critical pressure is . " . .

reachedFig. 20b)]. A likely explanation for this difference 1ations within the harmonic approximation suggested the ex-
is to be found in the fact that the compressibility exhibits alStence of a reentrant triangular solid phase at very high pres-
critical point divergence. This presumably swamps theSUres, the HDTS. The existence of this phase was confirmed

anomalous compressibility maximum well before the criticaluSing lattice switch MC. Evidence was also found for a
point is reached. metastable LDTS-HDTS and associated critical point lying

at low temperatures and high pressures, well below LDTS
melting temperature.

Considerable effort was devoted to probing the behavior

In this paper we have investigated the phase behavior anaf the liquid state anomalies in the number density and com-
liquid state anomalies of two distinct CS models. Below, wepressibility in the liquid phase. Maxima in the density and
summarize and discuss our results for each model in turn. compressibility were observed along two widely separated

For the 2D shoulder potential, we obtained the liquid-gadines of constani.. An inspection of configurations on either
coexistence curve and studied how it evolves into the LDTSide of the compressibility maximum indicated that its pres-
sublimation line at the gas-liquid-LDTS triple point. In the ence is associated with the freezing of the liquid to the
solid region of the phase diagram we employed lattice switch.DTS. The double peaked nature of the density distribution
MC techniques and Gibbs-Duhem integration to map thdunction at the temperature of the compressibility maximum
phase boundary between the LDTS and the HDSS from vergonfirmed the existence of two distinct favored regions of
low temperatures up to the melting point. Analytical calcu-density.

IV. SUMMARY, DISCUSSION, AND CONCLUSIONS
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Measurements of the temperature dependence of the cortie liquid. While we do not discount the possibility of a
pressibility and density maxima for a wide range of systemmetastable liquid-liquid critical point somewhere within the
sizes revealed pronounced finite-size effects. For small tbDTS phase, it is difficult to see how it couléh the inter-
medium system sizes, these took the form of systematipretation of Ref[10]) give rise to a compressibility maxi-
changes in the peak heights and peak temperatures. IntereBium of the scale we observe on two such widely separated
ingly, however, the differences between the results for thdines of isou. We further remark that our interpretation of
largest systems were much less pronounced than for tHge origin qf the anomalies |s_conS|stent Wlth the re.cently
smallest systems. Finite-size difference between the smalle&gPorted failure to observe their presence in 3D versions of
and largest systems, of the magnitude observed, are stronghfoulder model$12,54. Here the freezing transition is ex-
indicative of a large correlation length The apparent con- Pected to be sharply first order in character, with no large
vergence of the results for the compressibility peak suggesféuctuating clusters of the solid phase within the liquid. As
that this correlation length iarge but finiteat the transition. ~ Such, there will be little or no sign of the approach to freez-
In such circumstances one would expect that in the regimé9- o
L<¢, finite-size effects are great, while for system sizes __Turning now to our results for Jagla's ramp potential in
=¢, they begin to die away. In support of this, we note that3D. we find a liquid-gas coeX|ste_nce curve at high tempera-
it is widely believed that the 2D freezing transition has ature and low pressure, and confirm the existence of a stable
pseudocontinuous character, although the precise nature BnSsition between a high-density liquid and a low-density
the transition remains the subject of some debage52]. I|qU|d_ _at lower temp_e_rature ant_d higher pressure. The_ latter

Our results for the density distributign(p) suggest that transition has a positive slope in tf®eT plane, contrasting
the density maximuniwhile clearly occurring at tempera- with _the resu_lts for most studies of metastable I|qU|d—I|q.u.|d
tures in excess of the freezing temperatuie associated coexistence in .models pf water, which suggest a transition
with the first appearance of clusters of LDTS crystallineline with negative gradientsee, e.g., Ref{17]). For both
structure within the liquid phasgs3]. This is evidenced by transitions we have mapped a portion of the coexistence
the subsidiary peak occurring at the LDTS dengit Fig.  cUrve and determined the critical parameters. Wlthln_'ghe
8(b)], and by the liquid phase snapshots just above the melt-PL phase, and below the temperature of the second critical
ing temperature, Fig. (B), at the point where the density point, we find maxima in the density and compressibility as a
starts to fall rapidly. Since these solidlike clusters possess &inction of temperature. In contrast to the 2D shoulder
lower local density than that of the coexisting liquid, their Model, these anomalies are authentic, i.e., they are not asso-
presence reduces the average density. As the temperaturecigted with the formation of an incipient phase. The locus of
lowered towards the freezing transition, the size and persisdénsity maxima appears to terminate on the coexistence
tence of the solid-like clusters increases, causing the averagéve very close to the second critical point.
density to fall ever more rapidljcf. Fig. 8b)]. The shift of ~ Finally, with regard to the general issues raised by our
the peak in the average density to lower temperatures witfindings, the presence of a stable second critical point in the

increasingL is a natural consequence of the fact thattfor f@mp model begs the question as to what features of this
<¢, the apparent freezing point will occur at higher tem- potential are responsible for its existence, when none is ob-
peratures than in the thermodynamic limit. served in other single component fluids such as the Lennard-

We have also addressed reports of a liquid-liquid critica?ones fluid. Although we have not yet studied this matter in
point within cell theory for the 2D shoulder model. Our own detail, it seems likely that the potential minimum must be
cell model study(Sec. 1l O, does reveal a second critical located at a sufficiently large radius relative to the hard core,
point, but at parameters far removed from those quoted igtherwise the LDL-HDL transition is preempted by the

Ref.[10]. We stress, however, that the appearance of a sedreezing transition. This mirrors the known requirements for
ond critical point within cell theory is not a feature peculiar € €xistence of a liquid-gas transition, which is stable with

to CS potentials. Indeed in a recent reappraisal of cell theor{ESPeCt to the crystalline phases only for an attractive poten-
for the 12-6 Lennard-Jones flu[@9], we have shown that ial of sufficiently large rang€55]. It would be of consider-

this model also exhibits a second critical point. Moreover able interest to examine the precise role of the interaction
the second critical point occurring in both the Lennard-Jone§2ng€ on the stability of the LDL-HDL critical point, as well
and CS models appears to be an artifact of the lattice-baséif Other factors such as the steepness of the soft core and the
nature of cell theory, terminating as it does a phase bounda/§ePth of the minimum. Such a study could benefit the gen-
between a liquidlike and a solidlike phase. In view of this, it€ral understanding of the relationship between waterlike
seems unlikely that cell theory will ever represent a usefyunomalies in real systems and second critical points, whether

approach for investigating the liquid phase behavior of cgnetastable or otherwig&6]. We hope to report on this mat-
ter in future work.

systems.
Taken together, our results lead us to conclude that the
thermodynamic anpm_alles of the 2D_shou|der model are not ACKNOWLEDGMENTS
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